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Vectors in space (Part I) 

 

It is best that before you start to study vectors in the area to view the file "Vectors 

in the plane," because many things are "transferred" from the  plane. 

Let us first ad a right-angled Cartesian trihedron. 

Through a single point set of three vertical lines        

 

                                                                       

                                                                                      X-axis  

                                                                                      Y-axis  

                                                                                      Z-axis  

                                                                                      

 

 

This axis make  coordinates plane (xOy, xOz and yOz) normal one to  another. 

On  x, y and z observe unit vectors ,
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The intensity vectors 
→

a  is 2

3

2

2

2

1 aaaa ++=
→

 

Unit vector for vector 
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a   is vector 
a

a
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If you have two points A and B in space , vector  
→

AB is : 
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   The scalar product (•) 

If we have  vectors 
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If you do not have a given angle between vectors:  
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Condition of normality: 
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Projection of a vector to another: 
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Examples: 

1) Find the scalar product of vectors: 

Solution: 
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2) We have vectors  )2,1,1( −=
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3) Find projection  of  vector )5,2,5(=
→

a  on vector )2,1,2( −=
→

b  
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given the coordinates of the vertices of a triangle 

4) Given coordinates of the vertices of a  triangle ABC  are A(-1,3,1),B(3,4,-2), C(5,2,-1). 

Set  angle ABC. 
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Vector product (x)-  ba×  

If we have : 

 

  

 a

b

c

..
 

                       Then   ba× = c    is vector product                    Take heed:  ab× = - c  

 

1 Vector c  is perpendicular to the vector a
�

 and the vector b
�

 

2) The intensity of vector c  , c
→

 is numerically equal to the surface of the 

parallelogram  over  vectors a
�

 and b
�

 

3) c  vector is determined by policy of  right triedra  

 The intensity of vector  ba×  is: ),(sin babacba ∠==×  

Vectors a  and b  are collinear if and only if their vector product is equal to 0. 

Specifically: 

 ba× = 

321

321

bbb

aaa

kji

= Develop this determined and (for example) get = 
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Where   #, $, &  are    some numbers. 
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Parallelogram area over  vectors  a   and  b   is  P = ba×  

While calculate the area of a triangle (logical) as half of  parallelogram area: 

 ∆P = 
2

1
ba×  

5. Calculate the area of the parallelogram constructed  over vectors:  

 a =(1,1,-1)     and    b (2,-1,2) 

Solution: P = ba×  

 First we must find  ba× . 

 ba× = 

212

111
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kji

=  i (2-1) - j (2+2) + k (-1-2)  = 1 i  - 4 j  - 3 k  =(1, -4, -3) 

 

ba× = 
222 )3()4(1 −+−+ = 26    then  P= 26  

6) Calculate the area of a triangle if the coordinates of vertices are:  A(2, -3, 4), 

B(1,2,-1), C(3,-2,1)  

Solution: First, create vectors AB   and  AC  

 A(2,-3,4) B(1,2,-1)

C(3,-2,1)

 

 AB = (1 – 2, 2-(-3), -1 – 4) =  (-1,5,-5) 

AC  = (3-2, -2 – (-3), 1 – 4) = (1,1, -3) 

 ∆P  = 
2

1
ba×       
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              AB ×  AC  = 
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= -10 i  - 8 j  - 6 k  

222 )6()8()10( −+−+−=× ACAB = 210200 =  

∆P = 
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1
 210 = 5 2   and solution is  here! 

 

 

 

 

 

 

 

 


